US009170948B2

a2z United States Patent (10) Patent No.: US 9,170,948 B2
Loh et al. 45) Date of Patent: Oct. 27,2015
(54) CACHE COHERENCY USING DIE-STACKED (56) References Cited
MEMORY DEVICE WITH LOGIC DIE
(71) Applicants:Gabriel H. Loh, Bellevue, WA (US); U.S. PATENT DOCUMENTS
Bradford M. Beckmann, Redmond, WA 6.189.065 Bl 2/2001 Arndt ef al.
(US); Lisa R. Hsu, Kirkland, WA (US); 6,519,674 Bl 2/2003 Lam et al.
Michael Ignatowski, Austin, TX (US); 7,477,535 B2 1/2009 Lahtinen et al.
Michael J. Schulte, Austin, TX (US) 7,796,446 B2 9/2010 Ruckerbauer et al.
(72) Inventors: Gabriel H. Loh, Bellevue, WA (US); ;:ggg:ggé Eé ;‘ggg g;;?gf {ﬁ'er ctal.
Bradford M. Beckmann, Redmond, WA 8,356,138 Bl 1/2013 Kulkarni et al.
(US); Lisa R. Hsu, Kirkland, WA (US); Continued
Michael Ignatowski, Austin, TX (US); (Continued)
Michael J. Schulte, Austin, TX (US) OTHER PUBLICATIONS
(73) Assignee: Advanced Micro Devices, Inc.,)) o)
Sunnyvale, CA (US) International Search Report and Written Opinion correlating to PCT/
" US13/075956 dated May 9, 2014, 13 pages.
(*) Notice: SubJeCt. to any dlsclalmer,. the term of this Non-Final Office Action mailed May 14, 2014 for U.S. Appl. No.
patent is extended or adjusted under 35 13/726,145, 23 pages.
U.S.C. 154(b) by 259 days. Non-Final Office Action mailed Jun. 20, 2014 for U.S. Appl. No.
(21) Appl. No.: 13/726,146 13/567,945, 31 pages.
(22) Filed: Dec. 23,2012 (Continued)
(65) Prior Publication Data .
Primary Examiner — Hiep Nguyen
US 2014/0181417 Al Jun. 26, 2014
(51) Int.CL 57 ABSTRACT
GOGF 12/08 (2006.01) A die-stacked memory device implements an integrated
HOIL 25/18 (2006.01) coherency manager to offload cache coherency protocol
G11C 5/02 (2006.01) operations for the devices of a processing system. The die-
G11C 8/12 (2006.01) stacked memory device includes a set of one or more stacked
G11C 29/12 (2006.01) memory dies and a set of one or more logic dies. The one or
HOIL 25/065 (2006.01) more logic dies implement hardware logic providing a
(52) US.CL memory interface and the coherency manager. The memory
CPC ..o GO6F 12/0828 (2013.01); G11C 5/025 interface operates to perform memory accesses in response to
(2013.01); G11C 8/12 (2013.01); G11C 29/12 memory access requests from the coherency manager and the
(2013.01); HOIL 25/0655 (2013.01); HOIL one or more external devices. The coherency manager com-
25/18 (2013.01); HOIL 25/0657 (2013.01); prises logic to perform coherency operations for shared data
HOIL 2224716225 (2013.01); HOIL 2225/06541 stored at the stacked memory dies. Due to the integration of
(2013.01); HOIL 2225/06565 (2013.01); HOIL the logic dies and the memory dies, the coherency manager
2924/1461 (2013.01); HOIL 2924/15311 can access shared data stored in the memory dies and perform
(2013.01); Y02B 60/1225 (2013.01) related coherency operations with higher bandwidth and
(58) Field of Classification Search lower latency and power consumption compared to the exter-

CPC GOGF 12/0246; GOGF 12/0815; GOGF
12/0828; GOGF 12/084

See application file for complete search history.

nal devices.

26 Claims, 5 Drawing Sheets

128 128 -
P g 7 e / f;
P L 4
s 128 A 7
f WENORT DI 10 ¥4
-~ y i
{ WENORY DI 120 ¥
o /}W /, / g
f WEMORY DE 120 4 / 7
103 = T 4
108 w o 0 4
)) 112 { GRY DIE 70
o ! o i A
LT R y HHH] /e 4
PR T < :
P CORE . LORE://W/ A T ¥/ COMERENC g
T i T iz CUUIREEEY . MANAGER /
e oanE ATy S paereace 1 Al)
l 1528 b LOGIC DIE 127 ¥
EXTERNAL DEVICE 104 108 // :5@«@@]

LOGIC DI 122)

190

STACKED MEMORY DEVICE 142

US 9,170,948 B2
Page 2

(56) References Cited
U.S. PATENT DOCUMENTS

8,423,789 Bl 4/2013 Poo etal.
8,451,014 B2 5/2013 Black et al.
8,519,739 Bl 8/2013 Leon
8,546,955 B1 10/2013 Wu
8,700,951 Bl 4/2014 Call et al.
8,778,734 B2 7/2014 Metsis

2004/0153902 Al
2006/0164882 Al
2008/0066302 Al
2008/0320346 Al

8/2004 Machado et al.
7/2006 Norman
3/2008 Chung
12/2008 Lin

2009/0017580 Al 1/2009 Smith
2009/0055596 Al 2/2009 Wallach et al.
2009/0103345 Al* 4/2009 McLarenetal. 365/64

2009/0190404 Al
2009/0313483 Al
2010/0005118 Al
2010/0008058 Al
2010/0070696 Al
2010/0070782 Al
2010/0157644 Al*
2010/0161918 Al
2010/0167100 Al
2011/0231739 Al
2012/0023376 Al
2012/0079176 Al
2012/0104578 Al
2012/0130983 Al
2012/0204073 Al
2012/0273782 Al
2012/0290793 Al
2013/0031330 Al
2013/0042060 Al
2013/0086353 Al
2013/0257481 Al
2013/0292840 Al
2014/0013169 Al

7/2009 Roohparvar
12/2009 Ranade
1/2010 Sezer
1/2010 Saen et al.
3/2010 Blankenship
3/2010 Majewski et al.
6/2010 Normancccecveennnn 365/51
6/2010 Norman
7/2010 Moore et al.
9/2011 Kim
1/2012 Jeddeloh
3/2012 Sun et al.
5/2012 Hu et al.
5/2012 Ryan et al.
8/2012 Whetsel
11/2012 Goel et al.
11/2012 Chung et al.
1/2013 Jones et al.
2/2013 Marukame et al.
4/2013 Colgrove et al.
10/2013 Metsis
11/2013 Shoemaker et al.
1/2014 Kobla et al.

2014/0085959 Al* 3/2014 Saraswatetal. ... 365/63

2014/0108891 Al 4/2014 Strasser et al.

2014/0173113 Al* 6/2014 Vemurietal. 709/226
OTHER PUBLICATIONS

Nathan Brookwood, “AMD Fusion Family of APUs: Enabling a
Superior, Immersive PC Experience”, AMD White Paper: AMD
Fusion Family of APUs, Mar. 2010, 8 pages.

“How Computers Work: The CPU and Memory”, <http://homepage.
cs.url.edw/faculty/wolfe/book/Readings/Reading04 htm> Feb. 1,
2002, 1 page.

N. S. Matlo, “Introduction to Microcoded Implementation of a CPU
Architecture”, <http://www.cs.ucsb.edu/~chong/154/Tan.pdf> Jan.
21, 1997, 12 pages.

Lixin Tao, “Interrupt Processing”, <http://csis.pace.edw/~lixin/
teaching/cs37 1/interrupt.pdf> Sep. 2002, 3 pages.

Shawn Hargreaves, “An elf in a box”, <http://blogs.msdn.com/b/
shawnhar/archive/2008/03/3 1/an-elf-in-a-box.aspx> Mar. 31, 2008,
5 pages.

Chris Rawson, “Mac 101: Integrated versus discrete graphics”,
<http://www.tuaw.com/2010/05/14/mac-101-integrated-versus-dis-
crete-graphics/> May 14, 2010, 2 pages.

Matthew Hogan, “Silicon Interposers: building blocks for 3D-lcs”,
<http://electroiq.com/blog/2011/06/silicon-interposers-building-
blocks-for-3d-ics/> Jun. 14, 2011, 6 pages.

Nigel Jacob, “Offloading IDS Computation to the GPU”, 22nd
Annual Computer Security Applications Conference (ACSAC’06),
<http://www.acsac.org/2006/papers/74.pdf> Dec. 21, 2006, 10
pages.

Laura Tiffany, “How Many Computer Processors Do You Need?”
<http://www.allbusiness.com/computing-information-technology/
parallel-computing/12603535-1/html> Aug. 7, 2009, 2 pages.

QNX “Processes and Threads”, <http://www.qnx.com/developers/
docs/6.4.0/neutrino/getting_ started/s1__procs.html> May 29, 2009,
20 pages.

Eric Chan, “GPU Gems 2” <http:/http.developer.nvidia.com/
GPUGems2__chapter22 html> Apr. 15, 2005, Chapter 22, 11 pages.
Yi Yang et al. “CPU-assisted GPGPU on fused CPU-GPU architec-
tures”, IEEE, Feb. 2012, 12 pages.

Debra Cook et al. “Secret Key Cryptography Using Graphics Cards”,
Columbia University Technical Report, Jan. 14, 2004, 14 pages.
Matthew Hogan et al. “Robust Verification of 3D-Ics: Pros, Cons and
Recommendations”, IEEE, Aug. 21, 2009, 6 pages.

Carlos Carvalho, “The Gap Between Processor and Memory
Speeds”, ICCA, 2002, 8 pages.

Christianto C. Liu et al. “Bridging the Processor-Memory Perfor-
mance Gap with 3D IC Technology”, IEEE vol. 22, Issue 6, Nov. 21,
2005, 9 pages.

Jon Stokes “Ask Ars: what is a CPU thread?” Ministry of Innovation
of Technology, Apr. 12, 2011, 2 pages.

“Computer-System Operation”, <http://siber.cankaya.edu.tr/
operatingsystems/ceng328/nodel5 html> Feb. 14, 2011, 4 pages.
Non-Final Office Action mailed Dec. 20, 2013 for U.S. Appl. No.
13/567,945, 13 pages.

Non-Final Office Action mailed Feb. 27, 2014 for U.S. Appl. No.
13/567,958, 24 pages.

U.S. Appl. No. 13/328,393, filed Dec. 16, 2011, entitled “Memory
Architecture for Read-Modify-Write Operations”.

U.S. Appl. No. 13/567,945, filed Aug. 6, 2012, entitled “Stacked
Memory Device With Metadata Mangement”.

U.S. Appl. No. 13/567,958, filed Aug. 6, 2012, entitled “Stacked
Memory Device With Helper Processor”.

U.S. Appl. No. 13/726,142, filed Dec. 23, 2012, entitled “Die-
Stacked Device With Partitioned Multi-Hop Network”.

U.S. Appl. No. 13/726,143, filed Dec. 23, 2012, entitled “Die-
Stacked Memory Device Providing Data Translation”.

U.S. Appl. No. 13/726,144, filed Dec. 23, 2012, entitled “Quality of
Service Support Using Stacked Memory Device With Logic Die”.
U.S. Appl. No. 13/726,145, filed Dec. 23, 2012, entitled “Die-
Stacked Memory Device With Reconfigurable Logic”.

David Patterson et al., “FP 14.1: Intelligent Ram (IRAM): Chips That
Remember & Compute”, 1997 IEEE International Solid-State Cir-
cuits Conference, Feb. 7, 1997, 2 pages.

Gabriel H. Loh, “3D-Stacked Memory Architectures for Multi-Core
Processors”, ISCA *08 Proceedings of the 35th Annual International
Symposium on Computer Architecture, Jun. 2008, pp. 453-464.

J. Thomas Pawlowski, “ Hybrid Memory Cube (HMC)”, Micron
Technologies, Aug. 4, 2011, 24 pages.

Intel Platform Brief “Intel Atom Processor E6x5C Series-Based Plat-
form for Embedded Computing”, http://newsroom.intel.com/servlet/
jiveservlet/download/1512-31-3257/ProductBrief-
IntelAtomProcessor_ E600C__series_ v2.pdf, Jan. 2010, 4 pages.
Stretch, Inc. Configurable Processors, http://www.stretchinc.com,
Accessed Apr. 2, 2013, 1 page.

Non-Final Office Action mailed Nov. 7, 2014 for U.S. Appl. No.
13/726,142, 20 pages.

Final Office Action mailed Oct. 31, 2014 for U.S. Appl. No.
13/567,945, 23 pages.

Final Office Action mailed Aug. 11, 2014 for U.S. Appl. No.
13/567,958, 27 pages.

Notice of Allowance mailed Aug. 25, 2014 for U.S. Appl. No.
13/726,145, 22 pages.

International Search Report and Written Opinion correlating to PCT/
US2013/053599 dated Dec. 9, 2013, 8 pages.

International Search Report and Written Opinion correlating to PCT/
US2013/053596 dated Dec. 9, 2013, 8 pages.

NPL Non-Final Office Action mailed Jan. 15,2015 for U.S. Appl. No.
13/941,791, 33 pages.

U.S. Appl. No. 14/551,147, filed Nov. 24, 2014, entitled “Die-
Stacked Memory Device With Reconfigurable Logic”.

Non-Final Office Action mailed Dec. 17, 2014 for U.S. Appl. No.
13/726,143, 13 pages.

Non-Final Office Action mailed Dec. 22, 2014 for U.S. Appl. No.
13/726,144, 14 pages.

* cited by examiner

US 9,170,948 B2

Sheet 1 of 5

Oct. 27, 2015

U.S. Patent

¢ oI

CQOOOO0O0O00COOOOOO00000000

07 H3ASOHILNI
GIOI0101010ICTOIOI0IOICIOIOIOLe
07T 310 AOWIN 72T 340 31907
027 310 AHONIW }
527 210 AHOWIN 07— o
027 310 AHOWIN
P
5
20—
"
701 IOIAT0 ANORIN GIHOVLS -

7o) 901 |

721 3 2907
HAGYNYI \m.wﬂ m_oﬁmm.ﬁ.zm\mﬁ\
\,ozmmmxo.o Loggr AHONIW

FOT 32430 WREELXE

¢t 210 Adonan

A

G20 313 JNONEN

[AEIED J

L

0zt 310 AHOWIN !

i i

US 9,170,948 B2

Sheet 2 of 5

Oct. 27, 2015

U.S. Patent

p—

€ OId

¢it

IHOVD

S0IA30 OA

201 3SVHOV)
FET HAOVNYIN ADNTIIHOD
ﬁ«mwo,mﬁ 4 e
AONTNEHOD ; NDGTAINIHIHOD
g2 9¢e BEE
SID0T NOILYYIHO | owa [m Nwm
|) 3SNOJSIN 3E0Hd |
0% & ;
\ 280U)
5 5z 06 | T LINSTH/NOILYWHIENDGD
WAN AHLINDHID TI20 AHONIN A Ao [ONYIWNOO
m) VIVOSSaodY |
-) SS30OVANOMAN
{ \
BiE 8i¢
Vi
20—

=
Lo
o=t

AN
FHIVOD

263
HOSEID0N

it
FHOYO

Py
#0883004Hd

U.S. Patent

Oct. 27, 2015

Sheet 3 of 5

402~

IDENTIFY DATA OPERATION TO BE
PERFORMED BY DIE-STACKED
MEMORY

¥

404~

URDATE STACKED MEMORY WITH
LOCAL VERSIONS COF BATA AT
ADDRESS RANGE

¥

SEND COMMAND TO
DIE-STACKED MEMORY

408

\\
READ //

US 9,170,948 B2

NEXT SUB-OPERATION

”3
%

k 4
READ, MOBIFY, OR
OVERWRITE SUB-

\ OVERWRITE

413
)
¢ ¥

OPERATION?

\

412

/
{ ¥

MODIFY

48
k4 /’

SNOOP EXTERNAL DEVICES FOR
LUPDATED VERSIONS OF DATAAY
ADDRESS RANGE AND UPDATE DIE-
STACKED MEMORY

SNOOP EXTERNAL DEVICES FOR
UPDATED VERSIONS OF DATA AT
ADDRESS RANGE AND UPDATE DIE-
STACKED MEMORY

SNOOP EXTERNAL DEVICES TO
INVALIDATE CACHE LINES AT
EXTERNAL OEVICES

y

414

INVALIDATE AND LOCK CACHE
LINES AT EXTERNAL DEVICES

4 A 4 A4

418

PERFORM SUB-OPERATION
AT DIE-STACKED MEMORY

k4

420

UNLOCK CACHE LINES AT
EXTERNAL DEVICES

422 ¥

FIG. 4

N\ 1o

LAST SUB-

OPERATION

/

Y

424~

PROVIDE OPERATION RESULTS TO
REQUESTING EXTERNAL DEVICE

US 9,170,948 B2

Sheet 4 of 5

Oct. 27, 2015

U.S. Patent

Ik ZAHOVD LY 3AISNTOXE 6t
% IHOVD
B (7000 JOONS e
) IDIAIA O
08 N
@%m / 025—"]
{ !
ol) } NNNN J |85 7
¥ 28— IHOYD
6] 0 0 0 Z00 [Mu@.«z%o \, -
L1 0] 0 1000 AONIHIHOD .. | (V000 JOONS § wossao0ud
[
0] 0)) 000N~ 5 915
W IaHYO lzaHovo 1aHYD L (40018 SHWD)
S8IHAY
/ %)/I\Nw,m .ﬂlw\wu.
008 i
008 0oe L viIva SOV
57 ' LOY
4) HOSSIDOU
55T AMLINOUIS 7130 AHONZN (¢000 Qv3y
. 0ig
3DIA3C
AHOWNIN : j
QINOVLS _

U.S. Patent Oct. 27, 2015 Sheet 5 of 5 US 9,170,948 B2

600 —_| MAINTAIN CACHE BLOCK ACCESS |
HISTORY f*

ANALYZE CACH BLOCK ACCESS

FIG. 6 604 —~_] HISTORY TO PREDICT FUTURE 800
A AR He ACCESSIES)
PREPARE COHERENCY
606 —~_| CONFIGURATION IN ANTICIPATION |
OF PREDICTED ACCESS(ES) ¢
702 —| GENERATE FUNCTIONAL
SPECIFICATION
704 ~~_| GENERATE HARDWARE
DESCRIPTION CODE
700
706] GENERATE NETLISTS
708 —_| GENERATE PHYSICAL LAYOUT §

710 7 FABRICATE IC DEVICE

US 9,170,948 B2

1
CACHE COHERENCY USING DIE-STACKED
MEMORY DEVICE WITH LOGIC DIE

BACKGROUND

1. Field of the Disclosure

The present disclosure generally relates to processing sys-
tems and, more particularly, to cache coherency in processing
systems.

2. Description of the Related Art

Processing systems generally implement system memory
as a device separate from the devices implementing proces-
sors, input/output (I/O) components, and other components.
Such systems therefore are often bandwidth-limited due to
the volume of traffic on the interconnect connecting the sys-
tem memory to the other components and latency-limited due
to the propagation delay of the signaling traversing the rela-
tively-long interconnect and the handshaking process needed
to conduct such signaling. The inter-device bandwidth and
inter-device latency have a particular impact on processing
efficiency and power consumption of the system when a
performed task requires multiple accesses to system memory,
as each access requires a back-and-forth communication
between the system memory and the requesting device and
thus the inter-device bandwidth and latency penalties are
incurred twice for each access. This problem is exacerbated in
processing systems implementing cache coherency protocols
for shared memory, as the processor-initiated coherency
operations implemented in conventional cache coherency
protocols typically make relatively heavy use of the memory
interconnect and thus are significant sources of decreased
memory interconnect bandwidth and increased memory
interconnect latency.

BRIEF DESCRIPTION OF THE DRAWINGS

The present disclosure may be better understood, and its
numerous features and advantages made apparent to those
skilled in the art by referencing the accompanying drawings.
The use of the same reference symbols in different drawings
indicates similar or identical items.

FIG. 1 is a diagram illustrating an exploded perspective
view of a vertical-stack configuration of a processing system
implementing a die-stacked memory device with a logic die
implementing a hardware coherency manager to facilitate
cache coherency in accordance with some embodiments.

FIG. 2 is a diagram illustrating a cross-section view of a
side-split configuration of the processing system of FIG. 1 in
accordance with some embodiments.

FIG. 3 is ablock diagram illustrating the processing system
of FIG. 1 in greater detail in accordance with some embodi-
ments.

FIG. 4 is a flow diagram illustrating an example method of
implementing a snoop-based cache coherency protocol at a
coherency manager of a die-stacked memory device in accor-
dance with some embodiments.

FIG. 5 is a diagram illustrating an example method of
implementing a directory-based cache coherency protocol at
a coherency manager of a die-stacked memory device in
accordance with some embodiments.

FIG. 6 is a flow diagram illustrating an example method of
setting a coherency configuration by a coherency manager at
a die-stacked memory device based on predicted cache access
patterns in accordance with some embodiments.

10

20

30

35

40

45

2

FIG. 7 is a flow diagram illustrating a method for designing
and fabricating an integrated circuit (IC) package implement-
ing a die-stacked memory device in accordance with some
embodiments.

DETAILED DESCRIPTION OF PREFERRED
EMBODIMENTS

FIGS. 1-7 illustrate example techniques for improved pro-
cessing efficiency and decreased power consumption in a
processing system through the use of a die-stacked memory
device implementing an integrated coherency manager to
offload some or all cache coherency protocol operations for
memory addresses or memory address ranges mapped to the
memory cell circuitry of the die-stacked memory device. The
die-stacked memory device includes a set of one or more
stacked memory dies and a set of one or more logic dies. The
one or more logic dies implement hardware logic for a
memory interface and the coherency manager. The memory
interface is coupled to the memory cell circuitry and is cou-
pleable to one or more devices external to the die-stacked
memory device. The memory interface operates to perform
memory accesses in response to memory access requests
from both the coherency manager and the one or more exter-
nal devices. The coherency manager comprises logic to per-
form one or more coherency operations for shared data stored
atthe one or more stacked memory dies. Due to the coherency
manager’s tight integration with the memory dies, the coher-
ency manager can access shared data stored in the memory
dies and perform related coherency operations with higher
bandwidth and lower latency and power consumption com-
pared to the external devices. Moreover, the offloading of
coherency operations to the die-stacked memory device per-
mits the external devices to perform other tasks focusing on
program execution, thereby increasing the overall processing
throughput of the system.

For ease of illustration, example techniques are described
in the context of invalidation-based cache coherency proto-
cols that wait for invalidation acknowledgements before write
operations complete. However, using the guidelines provided
herein, the techniques may be similarly implemented for
update-based cache coherency protocols that push updates to
the devices sharing the corresponding memory resource.
Example cache coherency protocols that may be imple-
mented include one or a combination of the Modified-
Shared-Exclusive-Invalid (MESI) protocol (also referred to
as the Illinois protocol), the Modified-Owned-Exclusive-
Shared-Invalid (MOESI) protocol, the write-once, or Good-
man, protocol, the Berkeley protocol, the Firefly protocol, the
Directory Architecture for sHared Memory (DASH) proto-
col, and the like.

FIG. 1 illustrates a processing system 100 in accordance
with some embodiments. The processing system 100 can
comprise any of a variety of computing systems, including a
notebook or tablet computer, a desktop computer, a server, a
network router, switch, or hub, a computing-enabled cellular
phone, a personal digital assistant, and the like. In the
depicted example, the processing system 100 includes a die-
stacked memory device 102 and at least one external device
104 coupled via an inter-device interconnect 106. While the
processing system 100 typically includes multiple external
devices 104 coupled to the die-stacked memory device 102
via the interconnect 106, FIG. 1 depicts a single external
device for ease of illustration. The processing system 100 also
can include a variety of other components not illustrated in
FIG. 1, such as one or more display components, storage
devices, input devices (e.g., a mouse or keyboard), and the

US 9,170,948 B2

3

like. In some embodiments, the one or more external devices
104 are implemented separately or in combination as one or
more integrated circuit (IC) packages 103 and the die-stacked
memory device 102 is implemented as an IC package 105
separate from the IC packages 103 implementing the one or
more external devices 104. In some embodiments, some or all
of the external devices 104 and the die-stacked memory
device 102 are implemented as separate sets of dies connected
via an interposer in the same IC package. In either instance,
the term “external device,” as used herein, refers to a device
external to the die-stacked memory device 102.

In the illustrated example, the external device 104 is
depicted as a processor, and is thus also referred to herein as
“processor 104.” External devices can include other types of
devices, such as input/output (I/O) controllers. In this
example, the processor 104 comprises one or more processor
cores, such as processor cores 108 and 110, a northbridge
112, one or more caches 114 (e.g., a L1 cache, a L2 cache,
etc.), and various peripheral components (not shown). The
processor cores 108 and 110 can include any of a variety of
processor cores and combinations thereof, such as a central
processing unit (CPU) core a graphics processing unit (GPU),
a digital signal processor (DSP), and the like. The peripheral
components can include, for example, an integrated south-
bridge or input/output controller, and the like. The north-
bridge 112 includes, or is associated with, a memory control-
ler interface 116 comprising a physical interface (PHY)
connected to the conductors of the interconnect 106.

The interconnect 106 can be implemented in accordance
with any of a variety of conventional interconnect or bus
architectures, such as a Peripheral Component Interconnect-
Express (PCI-E) architecture, a HyperTransport architecture,
a QuickPath Interconnect (QPI) architecture, and the like.
Alternatively, the interconnect 106 can be implemented in
accordance with a proprietary bus architecture. The intercon-
nect 106 includes a plurality of conductors coupling transmit/
receive circuitry of the memory interface 116 of the external
device 104 with the transmit/receive circuitry of the memory
interface 130 of the die-stacked memory device 102. The
conductors can include electrical conductors, such as printed
circuit board (PCB) traces or cable wires, optical conductors,
such as optical fiber, or a combination thereof.

The die-stacked memory device 102 may implement any of
a variety of memory cell architectures, including, but not
limited to, volatile memory architectures such as dynamic
random access memory (DRAM) and static random access
memory (SRAM), or non-volatile memory architectures,
such as read-only memory (ROM), flash memory, ferroelec-
tric RAM (F-RAM), magnetoresistive RAM, and the like. For
ease of illustration, the example implementations of the die-
stacked memory device 102 are described herein in the
example, non-limiting context of a DRAM architecture.

As illustrated by the exploded perspective view of FIG. 1,
the die-stacked memory device 102 comprises a set of one or
more stacked memory dies 120 and a set of one or more logic
dies 122. Each memory die 120 comprises memory cell cir-
cuitry 126 implementing bitcells in accordance with the
memory architecture of the die-stacked memory device 102
and the peripheral logic circuitry 128 implements the logic
and other circuitry to support access and maintenance of the
bitcells in accordance with this memory architecture. To illus-
trate, DRAM typically is composed of a number of ranks,
each rank comprising a plurality of banks, and each bank
comprising a matrix of bitcells set out in rows and columns.
Accordingly, some embodiments, each memory die 120 may
implement one rank (and thus the banks of bitcells for the
corresponding rank). In another embodiment, the DRAM

20

25

30

40

45

4

ranks each may be implemented across multiple memory dies
120. For example, the die-stacked memory device 102 may
implement four ranks, each rank implemented at a corre-
sponding quadrant of each of the memory dies 120. In either
implementation, to support the access and maintenance of the
DRAM bit cells, the peripheral logic circuitry 128 may
include, for example, line drivers, bitline/wordline precharg-
ing circuitry, refresh circuitry, row decoders, column select
logic, row buffers, sense amplifiers, and the like.

The one or more logic dies 122 implement hardware logic
to facilitate access to the memory of the die-stacked memory
device 102. This logic includes, for example, the memory
interface 130, built-in self test (BIST) logic 131, and the like.
The memory interface 130 can include, for example, receiv-
ers and line drivers, memory request buffers, scheduling
logic, row/column decode logic, refresh logic, data-in and
data-out buffers, clock generators, and the like. Although the
illustrated embodiment depicts a memory controller 116
implemented at the processor 104, in other embodiments, a
memory controller instead may be implemented at the
memory interface 130. The memory interface 130 further
comprises a bus interface 132 comprising a PHY coupleable
to the conductors of the interconnect 106, and thus coupleable
to the external devices of the processing system 100.

In addition to implementing logic to facilitate access to the
memory implemented by the memory dies 120, one or more
logic dies 122 implement a coherency manager 134 to par-
tially or fully implement a cache coherency protocol for
memory addresses or memory address ranges mapped to the
memory cell circuitry 126 for the benefit of the external
devices of the processing system 100. The coherency man-
ager 134 is coupled to the memory interface 130 and com-
prises logic to perform one or more coherency operations.
The coherency manager 134 may include storage elements
(e.g., registers, caches, or content addressable memories)
located at one or more of the logic dies 122 to store cache
coherency-related information (hereinafter, “coherency
information”), the memory cell circuitry 126 may store the
coherency information, or some portions of the coherency
information may be stored in the storage elements ofthe logic
dies 122 while other portions are stored in the memory cell
circuitry 126. Further, in some embodiments, the coherency
manager 134 can employ a non-volatile memory (NVM),
such as flash memory, at a logic die 122 or in a memory die
120, to retain certain coherency information after a power-
down event.

In the illustrated example, the coherency manager 134 and
the memory interface 130 are implemented on the same logic
die 122. In some embodiments, the memory interface 130 and
the coherency manager 134 may be implemented on different
logic dies. For example, the memory interface 130 may be
implemented at one logic die 122 and the coherency manager
134 may be implemented at another logic die 122. In some
embodiments, one or both of the memory interface 130 and
the coherency manager 134 may be implemented across mul-
tiple logic dies. To illustrate, the memory interface 130 and
the logic circuitry of the coherency manager 134 may be
implemented at one logic die 122 and certain storage ele-
ments of the coherency manager 134 (e.g., a cache or content
addressable memory) may be implemented at another logic
die 122.

One or more logic dies 122 further may implement opera-
tion logic (not shown) to perform data manipulation opera-
tions using the data stored in the stacked memory dies 120.
These data manipulation operations typically take advantage
of the high-bandwidth, low-latency connection between the
logic dies 122 and the memory dies 120 to efficiently manipu-

US 9,170,948 B2

5

late the data in a manner that reduces or eliminates the snoop
traffic on the interconnect 106 that otherwise would have been
necessary had the data manipulation operation been per-
formed by an external device. Examples include, for example,
pointer-following operations, encryption operations, search
operations, and the like. As the correct performance of certain
data manipulation operations may rely on the manipulated
data being coherent, the coherency manager 134 can be used
to efficiently achieve this coherency for the data before the
operation logic performs the data manipulation operation.

In the depicted implementation of FIG. 1, the die-stacked
memory device 102 is implemented in a vertical stacking
arrangement whereby power and signaling are transmitted
between the logic dies 122 and the memory dies 120 using
dense through silicon vias (TSVs) 150 or other vertical inter-
connects. Although FIG. 1 depicts the TSVs 150 in a set of
centralized rows, the TSVs 150 instead may be more dis-
persed across the floorplans of the dies. Note that FIG. 1
provides an exploded-view representation of the dies 120 and
122 to permit illustration of the TSVs 150 and the compo-
nents of the dies 120 and 122. In implementation, each of the
dies overlies and is in contact with the preceding die. In some
embodiments, the coherency manager 134 accesses with the
memory implemented at the memory dies 120 directly via the
TSVs 150 (that is, the coherency manager 134 implements its
own memory controller). In another embodiment, the
memory interface 130 controls access to the TSVs 150 and
thus the coherency manager 134 accesses the memory dies
120 through the memory interface 130.

The die-stacked memory device 102 may be fabricated
using any of a variety of 3D integrated circuit fabrication
processes. In one approach, the dies 120 and 122 each are
implemented as a separate substrate (e.g., bulk silicon) with
active devices and one or more metal routing layers formed at
anactive surface. This approach can include a wafer-on-wafer
process whereby a wafer comprising a matrix of dice is fab-
ricated and thinned, and TSVs are etched through the bulk
silicon. Multiple wafers are then stacked to achieve the illus-
trated layer configuration (e.g., a stack of four wafers com-
prising memory circuitry dies for the four memory dies 120
and a wafer comprising the logic die for the logic die 122),
aligned, and then joined via thermocompression. The result-
ing stacked wafer set is singulated to separate the individual
3D IC devices, which are then packaged. In a die-on-die
process, the wafer implementing each corresponding die is
first singulated, and then the dies are separately stacked and
joined to fabricate the 3D IC devices. In a die-on-wafer
approach, wafers for one or more layers are singulated to
generate the dies for one or more layers, and these dice are
then aligned and bonded to the corresponding die areas of
another wafer, which is then singulated to produce the indi-
vidual 3D IC devices. One benefit of fabricating the dies 120
and 122 as dice on separate wafers is that a different fabrica-
tion process can be used to fabricate the logic dies 122 than
that used to fabricate the memory dies 120. Thus, a fabrica-
tion process that provides improved performance and lower
power consumption may be used to fabricate the logic dies
122 (and thus provide faster and lower-power interface logic
and circuitry for the coherency manager 134), whereas a
fabrication process that provides improved cell density and
improved leakage control may be used to fabricate the
memory dies 120 (and thus provide more dense, lower-leak-
age bitcells for the stacked memory).

In another approach, the dies 120 and 122 are fabricated
using a monolithic 3D fabrication process whereby a single
substrate is used and each die is formed on a preceding die
using a layer transfer process, such as an ion-cut process. The

10

15

20

25

30

35

40

45

50

55

60

65

6

die-stacked memory device 102 also may be fabricated using
a combination of techniques. For example, the logic dies 122
may be fabricated using a monolithic 3D technique, the
memory dies may be fabricated using a die-on-die or wafer-
on-wafer technique, or vice versa, and the resulting logic die
stack and memory die stack then may be bonded to form the
3D IC device for the die-stacked memory device 102.

FIG. 2 illustrates a cross-section view of an alternative
implementation of the die-stacked memory device 102 in
accordance with another embodiment of the present disclo-
sure. Rather than implement a vertical stack implementation
as shown in FIG. 1 whereby the one or more logic dies 122 are
vertically aligned with one or more memory dies 120, the
die-stacked memory device 102 instead may implement the
side-split arrangement of FIG. 2 whereby the one or more
memory dies 120 are implemented as an IC device 202 and
the one or more logic dies 122 are implemented as a separate
IC device 204, and the IC devices 202 and 204 (and thus the
logic dies 122 and the memory dies 120) are connected via an
interposer 206. In this arrangement, the one or more memory
dies 120 are “stacked” horizontally relative to the one or more
logic dies 122. The interposer 206 can comprise, for example,
one or more levels of silicon interposers, a printed circuit
board (PCB), or a combination thereof. Although FIG. 2
illustrates the stacked memory dies 120 together imple-
mented as a single IC device 202, the stacked memory dies
120 instead may be implemented as multiple IC devices 202,
with each IC device 202 comprising one or more memory dies
120. Likewise, the logic dies 122 may be implemented as a
single IC device 204 or as multiple IC devices 204. The one or
more IC devices 202, the one or more IC devices 204, and the
unifying interposer 206 are packaged as an IC package 205
representing the die-stacked memory device 102.

FIG. 3 illustrates the processing system 100 in block dia-
gram form in accordance with some embodiments. In this
example, the processing system 100 includes multiple exter-
nal devices, in the form of processors 301 and 302 and I/O
controller 303, coupled to the die-stacked memory device 102
via the interconnect 106. For ease of reference, the processors
301 and 302 and 1/O controller 303 are referred to herein
collectively as “external devices 301-303”. In some embodi-
ments, the interconnect 106 operates as both a memory data
interconnect and a coherency interconnect in that both data
and coherency protocol transactions are communicated
among the external devices and the stacked memory via the
interconnect 106. In other embodiments, the interconnect 106
operates as the memory data interconnect and a separate
interconnect is implemented for coherency protocol transac-
tions. In yet other embodiments, multiple interconnects may
be used to connect the external devices and the die-stacked
memory device 102. For example, the processors 301, 302,
and the I/O controller 303 each may have their own dedicated
bus or point-to-point interconnect to connect to the die-
stacked memory device 102.

The die-stacked memory device 102 implements a stacked
memory 300 represented by multiple stacked dies of memory
cell circuitry 126. The stacked memory 300 is operated as a
shared memory resource for the external devices 301-303
such that the external devices 301-303 share a global memory
address space, at least part of which has memory addresses or
one or more memory address ranges that map to memory
blocks of the memory cell circuitry 126. Further, the external
devices 301-303 utilize a memory hierarchy whereby local
copies of certain operands and other data are stored at one or
more local cache levels. For example, the processor 301, the
processor 302, and the I/O controller 303 may implement a
cache 311, a cache 312, and a cache 313, respectively, to store

US 9,170,948 B2

7

copies of data mapped to memory addresses associated with
the die-stacked memory device 102.

In operation, the die-stacked memory device 102 functions
as a conventional system memory for storing data on behalfof
other system components. In a conventional memory access
operation, an external device issues a memory access request
316 by manipulating the PHY of its memory interface 116
(FIG. 1) to transmit address signaling and, if the requested
memory access is a write access, data signaling via the inter-
connect 106 to the die-stacked memory device 102. The PHY
of the memory interface 130 receives the signaling, buffers
the memory access request represented by the signaling, and
then accesses the memory cell circuitry 126 to fulfill the
requested memory access. In the event that the memory
access request 316 is a write access, the memory interface 130
stores the signaled operational data to the location of the
stacked memory 300 indicated by the signaled address. In the
event that the memory access request 316 is aread request, the
memory interface 130 accesses the requested operational data
from the location of the stacked memory 300 corresponding
to the signaled address and manipulates the PHY of the
memory interface 130 to transmit signaling representative of
the accessed data 318 to the requesting external device via the
interconnect 106.

Moreover, the die-stacked memory device 102 also func-
tions to offload certain data manipulation operations from the
external devices of the processing system 100. These data
manipulation operations typically leverage the tight integra-
tion between the logic dies 122 and the stacked memory dies
120 so as to efficiently manipulate the data stored in the
stacked memory 300 without involving substantial back-and-
forth signaling via the interconnect 106, thereby freeing the
bandwidth of the interconnect 106 for other uses. Such data
manipulation operations can include, but are not limited to,
searches, gather/scatter operations, pointer chasing opera-
tions, compression, encryption, erasing blocks of memory,
and execution of embedded programs (e.g., interrupt han-
dling routines) via an embedded processor in the logic dies.
To this end, the one or more logic dies 122 may implement
one or more instances of operation logic 310 to perform the
data manipulation operations. The operation logic 310 may
be implemented as hardcoded or hardwired logic, as an
embedded processor executing software/firmware, or combi-
nations thereof. Examples of the operation logic 310 and
corresponding data manipulation operations are described in
co-pending U.S. patent application Ser. No. 13/567,945 and
co-pending U.S. patent application Ser. No. 13/567,958, the
entireties of which are incorporated by reference herein.

In some instances, data manipulation operations per-
formed by the die-stacked memory device 102 are initiated in
response to a memory access request 316 or in response to an
operation command 320 issued by an external device. For
example, the operation logic 310 may be configured to sup-
port a mark-and-sweep function for a garbage collection pro-
cess, and the external device can direct the die-stacked
memory device 102 to mark an object at address X as reach-
able by issuing an operation command 320 in the form of a
“MARK(X)” command, in response to which the operation
logic 310 writes a specified value (e.g., a “1”) to a status bit
associated with the data stored at address X. The operation
logic 310 can provide a response 322 to the operation com-
mand 320 issued by the external device, whereby the response
322 can include, for example, a confirmation that the opera-
tion command 320 has been received and carried out, or a
result of the performance of the data manipulation operation
represented by the operation command 320.

25

30

40

45

50

8

Certain data manipulation operations may be software-
invisible or background operations run independent of the
external device 104. Accordingly, in other instances, data
manipulation operations may be initiated by the die-stacked
memory device 102 independent of memory access requests
316, operation commands 320, or other signaling from the
external devices. To illustrate, the operation logic 310 may be
configured to periodically scan through the data stored at the
stacked memory 300 and the corresponding ECC values to
identify and correct data that was corrupted due to a soft error
or a malfunction of the memory cell circuitry 126.

Regardless of the event initiating a data manipulation
operation, correct operation of the data manipulation opera-
tion often requires that the involved data be up-to-date, or
“coherent”; that is, the data stored in the stacked memory 300
and manipulated during the data manipulation operation
reflects the most recent version of that data. In some embodi-
ments, the device requesting the data manipulation operation
performs the coherency operations needed to ensure that the
changes to local versions of the data made by the external
devices are propagated to the die-stacked memory device 102
before the requesting external device sends the operation
command 320 to the die-stacked memory device 102. How-
ever, this processor-initiated coherency update approach can
unnecessarily consume processor resources and result in
unnecessary or inopportune coherency snoop traffic on the
interconnect 106.

Accordingly, in some embodiments, the cache coherency
protocol of the processing system 100 is at least partially
implemented by the die-stacked memory device 102. As part
of'this support of the cache coherency protocol, the coherency
manager 134 may store various coherency metadata in one or
more storage arrays 332 located at the stacked memory 300,
at a register file, a CAM, cache, or other storage element at a
logic die 122 (FIGS. 1 and 2), in a non-volatile memory 333,
ora combination thereof. The coherency manager 134 further
includes coherency logic 334 having access to the storage
array 332, and which is configured to perform cache coher-
ency operations using the coherency metadata stored therein.
The stored coherency metadata may include, for example,
coherency status information for corresponding memory
blocks for the caches of the external devices so as to enable
the coherency manager 134 to implement a directory-based
cache coherency policy. Another example of the stored coher-
ency metadata is metadata representing recent coherency
updates so as to enable the coherency manager 134 to imple-
ment a snoop filter. Further, as described in greater detail
herein, the coherency manager 134 may maintain and use a
cache access history to predict future cache accesses and to
set a coherency configuration in anticipation of these pre-
dicted memory accesses, and thus the coherency metadata
can include information representing this cache access his-
tory, as well as cache configuration information implemented
on the basis of the predicted cache accesses.

As described in greater detail herein, the implemented
cache coherency protocol may rely on probes communicated
among the devices of the processing system 100. These
probes can include, for example, snoop requests, snoop
responses, and the like. To illustrate, to determine the status of
data stored at particular memory block, one device may issue
a probe 336 to one or more other devices to determine the
statuses of the corresponding block in their local caches. Each
device receiving the probe 336 may assess its local cache
hierarchy to determine whether a version of the data is locally
cached, and if so, reply with a probe response 338 indicating
the status of the data in the local cache and, if modified by the
device, a copy of the data so modified. In some embodiments,

US 9,170,948 B2

9

the probe signaling communicated among the devices of the
processing system 100 is transmitted via the same intercon-
nect 106 used to facilitate general memory transactions. In
some embodiments, the probe signaling is communicated
among the devices as out-of-band signals using one or more
separate interconnects, such as a shared bus dedicated to
probe signaling or via point-to-point connections dedicated to
probe signaling.

FIG. 4 illustrates a method 400 for performing data
manipulation operations at the die-stacked memory device
102 using coherent data in accordance with some embodi-
ments. For ease of illustration, the method 400 is described in
the example context of the implementation of the processing
system depicted in FIG. 3. The method 400 initiates at block
402 whereupon a processor or other external device identifies
a data manipulation operation to be performed at the die-
stacked memory device 102. For example, in the course of
executing a program, the processor may initiate execution of
an instruction or sub-routine that triggers the outsourcing of a
data manipulation operation to the die-stacked memory
device 102 for execution. Such data manipulation operations
typically have the characteristic of being able to leverage the
co-location of the logic dies 122 and the stacked memory dies
120 so as to reduce or eliminate the number of memory access
transactions, or reduce the latency of such memory access
transactions, that would otherwise need to be conducted
between the die-stacked memory device 102 and the request-
ing external device over the interconnect 106. Encryption
operations, gather/scatter operations, search operations, and
pointer-chasing operations are examples of such operations.

In anticipation of instructing the die-stacked memory
device 102 to perform the data manipulation operation, at
block 404 the requesting external device writes any local
modified versions of the cache lines associated with the one or
more memory blocks expected to be involved with the data
manipulation operation back to the die-stacked memory
device 102. With the die-stacked memory device 102
updated, at block 406 the requesting external device transmits
an operation command 320 (FIG. 3) to the die-stacked
memory device 102. In other embodiments, the data manipu-
lation operation is triggered at the die-stacked memory device
102 independent of an operation command 320. For example,
the die-stacked memory device 102 may implement a garbage
collection process that periodically is performed for the
stacked memory 300 (FIG. 3), and thus an internal timer or
other internal trigger may be used to initiate the garbage
collection process.

A data manipulation operation may have one or more sub-
operations. For example, a search-and-replace operation may
have a search sub-operation and a replace sub-operation.
Each sub-operation may be broadly categorized into one of
three categories: read sub-operations; modify sub-operations;
and overwrite (or erase) sub-operations. Read sub-operations
are operations in which the operation logic 310 reads a well-
defined memory range without modifying the data. Search
operations and pointer-chasing operations are examples of
such read sub-operations. Modify sub-operations are opera-
tions in which the operation logic 310 modifies the data stored
at a well-defined memory range such that the resulting data is
based on the originally-stored data. An encryption operation
is an example of a modify sub-operation. Overwrite sub-
operations are operations in which the operation logic 310
overwrites the data stored at a well-defined memory range
such that the resulting data is not based on the originally-
stored data. An erase operation and an operation setting all
memory locations in a specified range to a specified value are
examples of such overwrite sub-operations.

20

25

30

40

45

55

10

In response to receiving the operation command 320 (or in
response to an internal trigger), at block 408 the coherency
manager 134 determines which coherency operations to
implement for each sub-operation of the data manipulation
operation identified by the operation command 320, whereby
the coherency operations so implemented depend on whether
the sub-operation represents a read sub-operation, a modify
sub-operation, or an overwrite sub-operation.

A read sub-operation typically is expected to operate on
coherent data. Accordingly, in the event that the next sub-
operation of the data manipulation operation to be performed
is a read sub-operation, at block 410 the coherency manager
134 ensures coherency for the memory address range associ-
ated with the read sub-operation by sending probes to the
external devices in the form of snoop commands for the cache
lines associated with the specified memory address range. In
response to receiving the corresponding snoop command, the
cache controller at each external device determines whether
any of its cache lines that correspond to the specified address
range have modified data. If so, the cache controller replies to
the snoop command by copying back the modified cache lines
to the stacked memory 300 of the die-stacked memory device
102. The coherency manager 134 further locks the identified
cache lines at the external devices by sending a lock com-
mand, either as part of the snoop command to obtain the
modified copies of the cache lines, or via a separate lock
command transmitted to the external devices. In response to
the corresponding lock command, the cache controllers at the
external devices lock the identified cache lines so as to pre-
vent the external devices from accessing the corresponding
data until the read sub-operation has completed. At this point,
the die-stacked memory device 102 and the external devices
are cache coherent for purposes of the read operation.

Referring back to block 408, modify sub-operations, like
read sub-operations, typically are expected to operate on the
most recent version of data stored at the specified memory
address range associated with the modify sub-operation.
Accordingly, if the current sub-operation to be performed is a
modify sub-operation, at block 412 the coherency manager
134 issues a snoop command to instruct the external devices
to write back to the stacked memory 300 of the die-stacked
memory device 102 any cache lines having modified data for
the specified memory address range, thereby updating the
die-stacked memory device 102 to store the most recent ver-
sion of data for the specified memory address range. Unlike
read sub-operations, however, modify sub-operations modify
the contents of the specified memory address range, and thus
the corresponding cache lines at the caches of the external
devices will no longer be coherent (that is, they will no longer
store the most recent version of the data). Accordingly, at
block 414 the coherency manager 134 also issues a snoop
command to the external devices to both lock and invalidate
the specified cache lines, in response to which the cache
controllers at the external devices lock the cache lines and
mark the cache lines as invalid so as to reflect that the caches
of'the external devices do not store up-to-date versions of the
data. At this point, the die-stacked memory device 102 and the
external devices are coherent for purposes of the modify
sub-operation.

Referring again to block 408, overwrite sub-operations are
independent of the data stored at the specified memory
address range, and thus it is not necessary to ensure cache
coherence for the specified memory address range at the
die-stacked memory device 102 before initiating a overwrite
sub-operation. Accordingly, if the current sub-operation to be
performed is an overwrite sub-operation, at block 416 the
coherency manager 134 refrains from issuing a snoop com-

US 9,170,948 B2

11

mand to update the stacked memory 300 of the die-stacked
memory device 102 while issuing a snoop command to the
external devices to instruct the corresponding cache control-
lers to invalidate the corresponding cache lines to reflect that
the caches of the external devices no longer store the most
recent version of the contents of the specified address range.
At this point, the die-stacked memory device 102 and the
external devices are cache coherent for purposes of the over-
write sub-operation.

It will be appreciated that the snoop signaling used to
achieve cache coherence can consume significant bandwidth
of'the interconnect 106. Accordingly, to reduce the amount of
snoop traffic, the coherency manager 134 can implement one
or more probe filters. Such probe filters typically utilize
coherency metadata (stored in, for example, the storage array
332 of FIG. 3) that represents the known states of various
blocks and inhibits certain snoop traffic based on these known
states. For example, U.S. Pat. No. 6,973,543 describes a
probe filter that records the addresses of blocks which are
known to be cached in a non-exclusive state (or known to be
not cached at all) and thus may suppress or prevent read
commands to a block that has been so recorded. Other types
of probe filters or combinations of probe filters may be used
by the coherency manager 134 to reduce snoop traffic in this
way.

When the die-stacked memory device 102 and the external
devices are cache coherent for purposes of the identified
sub-operation of the data manipulation operation, at block
418 the coherency module 134 signals this state to the opera-
tion logic 310 and, in response, the operation logic 310 per-
forms the sub-operation. With the completion of the current
sub-operation, the die-stacked memory device 102 no longer
requires exclusive access to the specified memory address
range and thus at block 420 the coherency manager 134 issues
a snoop command to unlock the corresponding cache lines at
the external devices. In situations whereby the cache lines
were invalidated, the cache managers at the external devices
may respond to the removal of the cache lock by issuing a
snoop request to the die-stacked memory device 102 or by
initiating a memory access request to the die-stacked memory
device 102 in order to obtain the most recent version of the
contents of the cache lines resulting from the data manipula-
tion operation.

At block 422, the coherency module 134 determines
whether there is another sub-operation to be performed for
the data manipulation operation. If so, the process of blocks
408-422 is repeated for the next sub-operation. Otherwise, if
all sub-operations have been performed, at block 424 the data
manipulation operation is identified as completed and the
operation logic 310 sends a response 322 to the requesting
external device to confirm completion of the requested data
manipulation operation and to provide the results of the data
manipulation operation, if any, to the requesting external
device.

FIG. 5 illustrates an example configuration of the die-
stacked memory device 102 to support a directory-based
cache coherency protocol in accordance with some embodi-
ments. In the illustrated example, the coherency manager 134
operates as a centralized control point for system-wide coher-
ency operations. In particular, the coherency manager 134
can leverage the relatively large amount of storage capacity
provided by the stacked memory 300 of the die-stacked
memory device 102 to maintain a coherency directory 500 in
the storage array 332 (FIG. 3) that contains coherency infor-
mation for corresponding addresses of the stacked memory
300.

10

15

20

25

30

35

40

45

50

55

60

65

12

As illustrated in FIG. 5, this coherency information can
include a plurality of entries 502, each entry 502 associated
with a corresponding memory block (e.g., a cache line) and
fields storing indicators of the location and state of cached
copies of the corresponding memory block. The location
information can be implemented as, for example, a location
field 504 storing a bit vector, whereby each bit position of the
bit vector represents a cache of a corresponding external
device and whereby a bit value of “1” in a given bit position
indicates that the cache line is cached at the external device
associated with the bit position, and a bit value of “0” indi-
cates that the cache line is not cached at that external device.
The state information may be implemented as, for example, a
modified field 506 storing a modified bit M, whereby a value
of “1” for the modified bit M indicates the contents of the
corresponding cache line have been modified at an external
device, and a value of “0” indicates the contents of the corre-
sponding cache line have not been modified. Although FIG. 5
illustrates the coherency information of the coherency direc-
tory 500 as a contiguous block of information, in some
embodiments the coherency information represented in the
coherency directory 500 can be distributed with the corre-
sponding data in the stacked memory 300. For example, each
entry 502 could be stored with the corresponding memory
block in the stacked memory 300. Moreover, although FIG. 5
illustrates one example configuration of a coherency direc-
tory, any of a variety of well-known coherency directory
configurations may be implemented using the guidelines pro-
vided herein.

As the coherency manager 134 operates as the centralized
control point, the coherency manager 134 monitors the snoop
traffic conducted among the devices of the processing system
100 to identify snoops directed to memory blocks maintained
in the coherency directory 500. Upon receiving a snoop
request for the contents of a given memory block, the coher-
ency manager 134 accesses the entry 502 of the coherency
directory 500 associated with the memory block and responds
to the requesting external device with information regarding
the status of the memory block in other caches in the process-
ing system 100.

Moreover, if the coherency manager 134 determines from
the coherency directory 500 that the stacked memory 300
stores a coherent version of the memory block (that is, a
modified version is not cached elsewhere), the coherency
manager 134 accesses the memory block and provides the
contents of the memory block to the requesting external
device. To illustrate, in response to a snoop request 510 from
the processor 301 for the memory block at address 0002, the
coherency manager 134 accesses the corresponding entry 502
of'the coherency directory 500 and, based on the modified bit
M being set to “0” determines that the stacked memory 300
stores the most-recent version of the contents of the memory
block at address 0002. Accordingly, the coherency manager
134 accesses the memory block at address 0002 and responds
to the snoop request 510 with a response 512 that includes the
accessed contents at the memory block.

If the coherency manager 134 determines from the coher-
ency directory 500 that the stacked memory 300 is not coher-
ent for the memory block (that is, modified versions of the
involved memory blocks are cached elsewhere), in some
embodiments the coherency manager 134 initiates a snoop
request to the external device caching the modified version of
a memory block. For example, in response to a snoop request
514 from the I/O controller 303 for the memory block at
address 0001, the coherency manager 134 accesses the cor-
responding entry 502 of the coherency directory 500 and,
based on the modified bit M being set to “1”, determines that

US 9,170,948 B2

13

a modified version of the contents of the memory block are
stored in another cache and determines from the location bit
vector that the modified version is located at the cache 312
associated with processor 302. In response, the coherency
manager 134 sends a snoop request 516 to the processor 302
to initiate the write-back of the modified contents of the
corresponding cache line to the stacked memory 300 of the
die-stacked memory device 102. Upon receipt, the coherency
manager 134 forwards the modified contents of the memory
block as a response 518 to the /O controller 303. In other
embodiments, the coherency manager 134 responds to the
snoop request 516 with a response 520 provided to the
requesting external device and including an indication of the
location of the cache storing the modified version of the
memory block (the cache 312 in this example), and the
requesting external device then initiates a snoop to that loca-
tion in order to update its local cache line.

The relative size of the stacked memory 300 may allow the
coherency manager 134 to maintain more detailed coherency
metadata and therefore better track the coherence state of
memory blocks among the external devices of the processing
system 100. Moreover, the relatively large size of the stacked
memory 300 and tight integration between the memory dies
120 implementing the stacked memory 300 and the logic dies
122 in the die-stacked memory device 102 can be leveraged
by the coherency manager 134 to support cache coherence
and improved processing efficiency by performing proactive
cache coherence operations in anticipation of the future needs
of the processing system 100. These proactive cache coher-
ence operations may be performed by the coherency manager
134 in addition to, or instead of, the reactive coherency opera-
tions described above. That is, the logic implemented at the
logic dies 122 (FIG. 1) of the die-stacked memory device 102
can perform operations that support the processing of coher-
ence operations without performing any additional modifica-
tion to the data. FIG. 6 illustrates an example method 600 for
providing this proactive cache coherency support in accor-
dance with some embodiments. The method 600 is described
in the example context of the processing system of FIG. 3.

At block 602, the coherency manager 134 maintains a
memory block access history in the storage array 332,
whereby the cache block access history contains metadata
that describes a history and context of previous access to
memory blocks maintained in the stacked memory 300 of the
die-stacked memory device 102. For example, the metadata
could describe the last N access requests to a corresponding
memory block, with the description of each access request
including, for example, an identifier of the requesting device,
the time of the access request, a result or type of access
request (e.g., read access, write access, etc.), and the like.
Thus, for each access to a memory block the coherency man-
ager 134 updates the memory block access history to reflect
the access to the corresponding memory block.

At block 604, the coherency manager 134 analyzes the
memory block access history to predict future accesses based
on patterns or other information gleaned from the memory
block access, and at block 606, the coherency manager 134
predicts future memory block accesses based on the analysis
at block 604 and then prepares a coherency configuration in
anticipation of the predicted future memory block accesses.
To illustrate, the memory block access history indicates that
the owner permissions for a memory block have migrated
between the external devices in a particular pattern, the coher-
ency manager 134 can use this observed pattern to predict the
next owner of the memory block and then migrate the exclu-
sive permissions for the memory block to the predicted next
owner. As another example, if the coherency manager 134

10

15

20

25

30

35

40

45

50

55

60

65

14

detects a pattern of reads following each write to a memory
block, the coherency manager 134 can migrate the contents of
the memory block to a shared cache (e.g., a shared .3 cache)
in response to a write to the memory block, thereby facilitat-
ing quicker access to the contents via the shared cache in
anticipation of the sequence of reads predicted to follow the
write. The amount of memory block access history informa-
tion that can be stored in the stacked memory 300 allows the
coherency manager 134 to develop more precise predictors of
sharing and access patterns and thus enable more effective
proactive coherency configurations, which can include pre-
dicting the number of reads that occur between writes (and
thus enabling the coherency manager 134 to suppress snoop
requests between writes), predicting the device to request a
memory block next (and thus enabling the coherency man-
ager 134 to proactively transfer ownership of the memory
block before the next request is received), predicting when
memory blocks are “dead” or no longer shared or in use (and
thereby permitting the cache lines corresponding to the
memory blocks to be evicted), and the like. By preemptively
making these predictions, the coherency manager 134 can
move many coherency operations off the critical path that is
the interconnect 106.

In some embodiments, the apparatus and techniques
described above are implemented in a system comprising one
or more integrated circuit (IC) devices (also referred to as
integrated circuit packages or microchips), such as the die-
stacked memory device 102 described above with reference
to FIGS. 1-6. Electronic design automation (EDA) and com-
puter aided design (CAD) software tools may be used in the
design and fabrication of these IC devices. These design tools
typically are represented as one or more software programs.
The one or more software programs comprise code execut-
able by a computer system to manipulate the computer sys-
tem to operate on code representative of circuitry of one or
more IC devices so as to perform at least a portion of a process
to design or adapt a manufacturing system to fabricate the
circuitry. This code can include instructions, data, or a com-
bination of instructions and data. The software instructions
representing a design tool or fabrication tool typically are
stored in a computer readable storage medium accessible to
the computing system. Likewise, the code representative of
one or more phases of the design or fabrication of an IC device
may be stored in and accessed from the same computer read-
able storage medium or a different computer readable storage
medium.

A computer readable storage medium may include any
storage medium, or combination of storage media, accessible
by a computer system during use to provide instructions
and/or data to the computer system. Such storage media can
include, but is not limited to, optical media (e.g., compact disc
(CD), digital versatile disc (DVD), Blu-Ray disc), magnetic
media (e.g., floppy disc, magnetic tape, or magnetic hard
drive), volatile memory (e.g., random access memory (RAM)
or cache), non-volatile memory (e.g., read-only memory
(ROM) or Flash memory), or microelectromechanical sys-
tems (MEMS)-based storage media. The computer readable
storage medium may be embedded in the computing system
(e.g., system RAM or ROM), fixedly attached to the comput-
ing system (e.g., a magnetic hard drive), removably attached
to the computing system (e.g., an optical disc or Universal
Serial Bus (USB)-based Flash memory), or coupled to the
computer system via a wired or wireless network (e.g., net-
work accessible storage (NAS)).

FIG. 7 is a flow diagram illustrating an example method
700 for the design and fabrication of an IC device implement-
ing one or more aspects. As noted above, the code generated

US 9,170,948 B2

15

for each of the following processes is stored or otherwise
embodied in computer readable storage media for access and
use by the corresponding design tool or fabrication tool.

At block 702 a functional specification for the IC device is
generated. The functional specification (often referred to as a
micro architecture specification (i)) may be represented by
any of a variety of programming languages or modeling lan-
guages, including C, C++, SystemC, Simulink™, or MAT-
LAB™,

At block 704, the functional specification is used to gener-
ate hardware description code representative of the hardware
of the IC device. In at some embodiments, the hardware
description code is represented using at least one Hardware
Description Language (HDL), which comprises any of a vari-
ety of computer languages, specification languages, or mod-
eling languages for the formal description and design of the
circuits of the IC device. The generated HDL code typically
represents the operation of the circuits of the IC device, the
design and organization of the circuits, and tests to verify
correct operation of the IC device through simulation.
Examples of HDL include Analog HDL (AHDL), Verilog
HDL, SystemVerilog HDL, and VHDL. For IC devices
implementing synchronized digital circuits, the hardware
descriptor code may include register transfer level (RTL)
code to provide an abstract representation of the operations of
the synchronous digital circuits. For other types of circuitry,
the hardware descriptor code may include behavior-level
code to provide an abstract representation of the circuitry’s
operation. The HDL model represented by the hardware
description code typically is subjected to one or more rounds
of simulation and debugging to pass design verification.

After veritying the design represented by the hardware
description code, at block 706 a synthesis tool is used to
synthesize the hardware description code to generate code
representing or defining an initial physical implementation of
the circuitry of the IC device. In some embodiments, the
synthesis tool generates one or more netlists comprising cir-
cuit device instances (e.g., gates, transistors, resistors, capaci-
tors, inductors, diodes, etc.) and the nets, or connections,
between the circuit device instances. Alternatively, all or a
portion of a netlist can be generated manually without the use
of'a synthesis tool. As with the hardware description code, the
netlists may be subjected to one or more test and verification
processes before a final set of one or more netlists is gener-
ated.

Alternatively, a schematic editor tool can be used to draft a
schematic of circuitry of the IC device and a schematic cap-
ture tool then may be used to capture the resulting circuit
diagram and to generate one or more netlists (stored on a
computer readable media) representing the components and
connectivity of the circuit diagram. The captured circuit dia-
gram may then be subjected to one or more rounds of simu-
lation for testing and verification.

At block 708, one or more EDA tools use the netlists
produced at block 706 to generate code representing the
physical layout of the circuitry of the IC device. This process
caninclude, for example, a placement tool using the netlists to
determine or fix the location of each element of the circuitry
of the IC device. Further, a routing tool builds on the place-
ment process to add and route the wires needed to connect the
circuit elements in accordance with the netlist(s). The result-
ing code represents a three-dimensional model of the IC
device. The code may be represented in a database file format,
such as, for example, the Graphic Database System II (GD-
SII) format. Data in this format typically represents geometric
shapes, text labels, and other information about the circuit
layout in hierarchical form.

10

15

20

25

30

35

40

45

50

55

60

65

16

At block 710, the physical layout code (e.g., GDSII code)
is provided to a manufacturing facility, which uses the physi-
cal layout code to configure or otherwise adapt fabrication
tools of the manufacturing facility (e.g., through mask works)
to fabricate the IC device. That is, the physical layout code
may be programmed into one or more computer systems,
which may then control, in whole or part, the operation of the
tools of the manufacturing facility or the manufacturing
operations performed therein.

Note that not all of the activities or elements described
above in the general description are required, that a portion of
a specific activity or device may not be required, and that one
or more further activities may be performed, or elements
included, in addition to those described. Still further, the order
in which activities are listed are not necessarily the order in
which they are performed.

Also, the concepts have been described with reference to
specific embodiments. However, one of ordinary skill in the
art appreciates that various modifications and changes can be
made without departing from the scope of the present disclo-
sure as set forth in the claims below. Accordingly, the speci-
fication and figures are to be regarded in an illustrative rather
than a restrictive sense, and all such modifications are
intended to be included within the scope of the present dis-
closure.

Benefits, other advantages, and solutions to problems have
been described above with regard to specific embodiments.
However, the benefits, advantages, solutions to problems, and
any feature(s) that may cause any benefit, advantage, or solu-
tion to occur or become more pronounced are not to be con-
strued as a critical, required, or essential feature of any or all
the claims.

What is claimed is:

1. An integrated circuit (IC) package comprising:

a die-stacked memory device comprising:

a set of one or more stacked memory dies implementing
memory cell circuitry; and

aset of one or more logic dies electrically coupled to the
memory cell circuitry, the set of one or more logic dies
comprising a coherency manager and a memory inter-
face, the memory interface coupled to the coherency
manager and coupleable to a device external to the
die-stacked memory device, and the coherency man-
ager to maintain coherency for memory addresses
mapped to the set of one or more stacked memory
dies.

2. The IC package of claim 1, wherein:

the set of one or more logic dies further comprises logic to

perform a data manipulation operation using data stored
at the set of one or more stacked memory dies in
response to a command from a device external to the
die-stacked memory device; and

the coherency manager is to probe caches of one or more

devices external to the die-stacked memory device
responsive to the command.

3. The IC package of claim 2, wherein the data manipula-
tion operation comprises a read sub-operation to access data
stored at the set of one or more stacked memory dies without
modifying the data and the coherency manager is to probe the
caches to replace the data stored at the set of one or more
stacked memory dies with the most recent modified cache-
able version of the data stored at the caches.

4. The IC package of claim 2, wherein the data manipula-
tion operation comprises a modify sub-operation to modify
data stored at the set of one or more stacked memory dies and
the coherency manager is to probe the caches to replace the
data stored at the set of one or more stacked memory dies with

US 9,170,948 B2

17

the most recent modified cacheable version of the data stored
at the caches and to invalidate any cacheable versions of the
data stored at the caches.

5. The IC package of claim 2, wherein the data manipula-
tion operation comprises an overwrite sub-operation to over-
write data stored at the set of one or more stacked memory
dies and the coherency manager is to probe the caches to
invalidate any cacheable versions of the data stored at the
caches.

6. The IC package of claim 2, further comprising:

a storage array to store information representing a history

of probes issued by the coherency manager; and
wherein the coherency manager comprises a probe filter to
filter probes using the storage array.

7. The IC package of claim 1, further comprising:

a storage array to store a coherency directory identifying
status information for memory blocks of the set of one or
more stacked memory dies, the status information com-
prising cached location and state information for each
memory block; and

the coherency manager is to update the coherency directory
responsive to snoop traffic from one or more devices
external to the die-stacked memory device.

8. The IC package of claim 7, wherein, in response to a
probe directed to a specified memory address from a device
external to the die-stacked memory device, the coherency
manager is to access the coherency directory and provide a
status of the memory block associated with the memory
address to the external device.

9. The IC package of claim 8, wherein the coherency man-
ager further is to provide contents stored at the memory block
to the external device responsive to the probe and responsive
to the memory block being up-to-date at the set of one or more
stacked memory dies.

10. The IC package of claim 1, further comprising:

a storage array to store information representing a history
of cache accesses to the set of one or more stacked
memory dies; and

wherein the coherency manager is to predict a next access
to a memory block based on an access pattern repre-
sented by the history of cache accesses, and the coher-
ency manager further is to set a coherency configuration
for the memory block responsive to the predicted next
access.

11. The IC package of claim 10, wherein the coherency
configuration comprises at least one of: providing exclusive
permission to a device predicted to issue the predicted next
access; and storing data stored at a memory block predicted to
be accessed by the predicted next access to a cache shared
with a device predicted to issue the next access.

12. The IC package of claim 1, wherein the set of one or
more stacked memory dies and the set of one or more logic
dies are disposed in a stacked configuration whereby the
memory interface is connected to the stacked memory dies
via a set of through silicon vias.

13. The IC package of claim 1, wherein the set of one or
more stacked memory dies and the set of one or more logic
dies are disposed in a side-split arrangement whereby the
memory interface is connected to the stacked memory dies
via an interposer.

14. A method comprising:

providing an integrated circuit (IC) comprising a set of one
or more stacked memory dies comprising memory cell
circuitry and comprising a set of one or more logic dies
electrically coupled to the set of one or more stacked
memory dies, the set of one or more logic dies compris-
ing a coherency manager coupled to the memory cell

10

15

20

25

30

35

40

45

50

60

18

circuitry of the set of one or more stacked memory dies
and comprising a memory interface coupled to the
coherency manager and coupled to one or more external
devices;
operating the memory interface to perform memory
accesses for the device; and
operating the coherency manager to maintain coherency
for memory addresses mapped to the set of one or more
stacked memory dies.
15. The method of claim 14, wherein:
operating the coherency manager to maintain coherency
comprises operating the coherency manager to probe
caches of one or more of the external devices responsive
to acommand from an external device; and further com-
prising:
operating logic at the set of one or more logic dies to
perform a data manipulation operation using data
stored at the set of one or more stacked memory dies
in response to the command from an external device
and in response to completing the probing of the
caches.
16. The method of claim 15, wherein:
the data manipulation operation comprises a read sub-
operation to access data stored at the set of one or more
stacked memory dies without modifying the data; and
operating the coherency manager to probe the caches com-
prises operating the coherency manager to probe the
caches to replace the data stored at the set of one or more
stacked memory dies with the most recent modified
cacheable version of the data stored at the caches.
17. The method of claim 16, wherein:
the data manipulation operation comprises a modify sub-
operation to modify data stored at the set of one or more
stacked memory dies; and
operating the coherency manager to probe the caches com-
prises operating the coherency manager to probe the
caches to replace the data stored at the set of one or more
stacked memory dies with the most recent modified
cacheable version of the data stored at the caches and to
invalidate any cacheable versions of the data stored at
the caches.
18. The method of claim 16, wherein:
the data manipulation operation comprises an overwrite
sub-operation to overwrite data stored at the set of one or
more stacked memory dies; and
operating the coherency manager to probe the caches com-
prises operating the coherency manager to probe the
caches to invalidate any cacheable versions of the data
stored at the caches.
19. The method of claim 14 wherein operating the coher-
ency manager to maintain coherency comprises:
operating the coherency manager to maintain a coherency
directory identifying status information for memory
blocks ofthe set of one or more stacked memory dies, the
status information comprising cached location and state
information for each memory block; and
operating the coherency manager to update the coherency
directory responsive to snoop traffic from one or more
external devices.
20. The method of claim 14 wherein operating the coher-
ency manager to maintain coherency comprises:
operating the coherency manager to maintain information
representing a history of cache accesses to the set of one
or more stacked memory dies; and
operating the coherency manager to predict a next access to
a memory block based on an access pattern represented
by the history of cache accesses, and the coherency

US 9,170,948 B2

19

manager further is to set a coherency configuration for
the memory block responsive to the predicted next
access.
21. A non-transitory computer readable storage medium
storing code that is operable to manipulate at least one com-
puter system to perform a portion of a process to fabricate an
integrated circuit (IC) package, the IC package comprising:
a die-stacked memory device comprising:
a set of one or more stacked memory dies implementing
memory cell circuitry; and
a set of one or more logic dies electrically coupled to the
memory cell circuitry, the set of one or more logic dies
comprising a coherency manager and a memory inter-
face, the memory interface coupled to the coherency
manager and coupleable to a device external to the
die-stacked memory device, and the coherency man-
ager to maintain coherency for memory addresses
mapped to the set of one or more stacked memory
dies.
22. The non-transitory computer readable storage medium
of claim 21, wherein:
the set of one or more logic dies further comprises logic to
perform a data manipulation operation using data stored
at the set of one or more stacked memory dies in
response to a command from an external device; and

the coherency manager is to probe caches of one or more
external devices responsive to the command.

23. The non-transitory computer readable storage medium
of claim 21, wherein the IC package further comprises:

a storage array to store a coherency directory identifying

status information for memory blocks of the set of one or

15

20

25

30

20

more stacked memory dies, the status information com-
prising cached location and state information for each
memory block; and

the coherency manager is to update the coherency directory
responsive to snoop traffic from one or more external
devices.

24. The non-transitory computer readable storage medium
of claim 21, wherein the IC package further comprises:

a storage array to store information representing a history
of cache accesses to the set of one or more stacked
memory dies; and

wherein the coherency manager is to predict a next access
to a memory block based on an access pattern repre-
sented by the history of cache accesses, and the coher-
ency manager further is to set a coherency configuration
for the memory block responsive to the predicted next
access.

25. The non-transitory computer readable storage medium
of claim 21, wherein the set of one or more stacked memory
dies and the set of one or more logic dies are disposed in a
stacked configuration whereby the memory interface is con-
nected to the stacked memory dies via a set of through silicon
vias.

26. The non-transitory computer readable storage medium
of claim 21, wherein the set of one or more stacked memory
dies and the set of one or more logic dies are disposed in a
side-split arrangement whereby the memory interface is con-
nected to the stacked memory dies via an interposer.

#* #* #* #* #*

